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COMPUTATION OF THE TWO-DIMENSIONAL
LAYER
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SUMMARY

A compari.mn ti nude of tlw boundury-hzyer~ com-
puted by the approximate method okvehped by K. Pohl-
hauwn with t?w exact solutti which have been publishd
for several 8peci.aLc.asee. A modification of pOhhU#HL’8
method lun been developed which edendk the ra~e of
application at the expense of 8ome dxmwe in the accuracy
of the approximdion.

Tlu work wm carried owt at the .NationuJ Bureau of
Standurds, inpartwi4hthe cooperation ad$nmwiul asei.8t-
ance of the Natimuzl Advisory Commti for Aeron.autim.

INTRODUCTION

The concept of the boundary layer introduced in
modern aerodynamics oby Prandtl has been extrw
ordinarily fitful in the interpretation of experimental
data. As yet, it is not possible to make the interpret-
tions quantitative, except in a few instancea, since the
equations describing the flow we nonlinear, and their
mathematical solution ia extraordinarily diiiicult, if not
altogether impraotkal in many cases of interest.
Pohlhausen (reference 1) developed an approximate
method of solution of the equations for 2-dimensional
kuninar flow which has been criticised by von Mises
(reference 2). Since Poblhausen’s method and related
methods are within the mathematical skill of most
experimenters, it seemed worth while to study the
possibilities and limitations of such methods as judged
by the instancea for which exact solutions are known.

POHLHAUSEN’S SOLUTION

The equations for the steady laminar flow of an in-
compressible fluid in the boundary layer along a
2-dimensional surface whose radius of curvature is
large as compared with the thickness of the layer are
as follows: 1
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where u is the tangential component of the velocity,
Dthe normal component, z the distance measured alo~~
the surface, y the distance measured normal to the
surface, v the kinematic viscosity of the fluid, p the
density of the fluid, and p the pressure. At the surface,
u and v are zero. As y inoreases, u approaches U, the
speed in the potential flow outside the boundary layer,
asymptotically. U is a function of z in general. From
equation (2) the pressure within the boundary layer is
independent of y and equal to that in the potential
flow. Since in the potential flow p+ %PU9 is constant,

j?g = –puu’

U’ denoting ‘Gus

(4)

From equations (1) to (4), an important integral
equation may be derived (reference 1), namely, the
Khrmhn integral relation

–2U’~m(U–u)dy– U&~”(U–u)dy

J
d“

‘Zo( ()
U–u)zdy= ‘V *

. @/ y=(l
(5)

In Pohlhausen’s approximate method of solution, a
suitable aswmption is made as to the shape of the
velocity-distribution curve, leaving undetermined a
parameter ~which maybe regarded aathe “thiclmws”
of the boundazy layer. 6 is then dekrmined as a
function of z from the relation (5), following which the
velocity distribution itself may be computed. The
procedure is reviewed here, omitting the algebraic
manipulations which are straightforward, though
tedious. ,

Pohlhausa wunw

u=ay+t&+c@+d~ (6)

To detmmine the 4 coefficients, 4 conditions are neces-
sary. It is iirst required that the distribution within
the boundary layer be continuous both as to magnitude

1A fnff dknmion of tie approximatfommade fn derivingtbe bcmndary-laye.r
equationsfs given by X- lWmIenzin Dfwfm P@tmbnkb e Jmmd, VOL328,
911,p. am
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and slope with the potential flow at y-& where 6 is a
function of z, at present undetermined. This gives the
2 conditions:

u=Uat y=6 (7)

(8)

The distribution is then made to satisfy the d.i&ren-
tial equation (1) at the two boundaries. This
requires z

(9)

rmd

$=0 aty=6 (lo)

From the 4 conditions 7, 8, 9, 10, the 4 coefficients
a, b, c, d in (6), may be determined. It is found that

‘=(+$ that is, equation (6) is of the form

(11)

where X=%and ~, a,, etc., are numbem hav@ the

values @=2, al = %, bo=o, b,-–%, CO–-2, c,=%,
d-l, d= –%. Tliepmameter Xgives the influence of
the potential flow on the shape of the curve relating the
nondimensional quantities u/U and y/& If k is con-
stant (or zero), the distribution curves are homologous
for all values of z, i.e., the curve of u/U vs. y/8 is inde-
pendent of z; 6 is, however, a function of z. If
m+@ Ai9 negative, u/U is negative for small values of
y/3j indicating a reverse flow near the surface. The

criterion for the beginning of reverse flow (sepmation)
is that

.

~=~~= _~
Q

(12)
v

The value of 6 is determined from (5), a procedure
which amounts to satisfying the differential equation
on the average and at the boundaries (by 9 and 10) but
not at every point. With the approximation (11)for the
distribution within the layer, the upper limits of the
integrals in (5) may be taken as 6 instead of co; since
at values of y/6>1, u is assumed equal to U rmd U-u
vanishes.

From (11) it maybe shown that

J)7-u) dy= U6 (S+ TA) (13)

where S and T are numbers computed from uO,al, etc.
Noting that both 6 and x are functions of z and thot

d’U
‘here ‘i” ‘mow d~ ‘

J& ,’(U–u) dy = (S+3TA) U%
+TUu”~ax+ U’a(s+n) (15)

J
Likewise ~(U–u)’ d~= U% (K+LA+MX~ (16)

whineK, L,and Marenumbers computed from UU,al,etc.,

J$ ,’(U–u)’dy= ~~ (K+3Lx+5MV)

+ 2UU’3 (K+ LA+ MU) + U%% (L+ 2Mx) (17)

Substitution in (5) ghw, writing ~ - z

Udz I 1–G– (z~–as+du’z- 2L–3T+ (L–T) ~ u’r~–2M(l +~i- )
‘u” U’*2

?IZ= K–S+3 (L–T) U’Z+5MUW

The values of S, T, K, L, and M are given by

(18)

The complete solution of Pohlhausen is gjven then by

where

z and hence 6 are to be determined from
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[
~z 0.8 –9072+ 1670.4A– 47.4+ 4.8 ~)~’-(l+~)q
—.
dx ~–213.12+5.76A+A’j (20)

Equation (2o) is of the form

dz=P (z, z)
dzm (21)

and cannot in general be directly integrated. In any
particular case, n graphical solution can be made by
the isocline method (reference 3) as illustrated later.

K= (2715– 933G+ 104a#)/6930
L= (281– 69Q–3732rq + 832~)/27720

M=(416Q’– 69Q +3)/27720

The solution for A= O (U’ = O) is lmown, namely,
that given by Blssius (reference 5). The value of ~
was taken as 1.89 to give a good approximation to
that solution.

With this value of ~:

~(x, Z) =3328 .4064–A(1837.44q-241 .23) –A2(2080a,’
–345fzq+ 15) (23)

To prevent dz/dx from becoming iniinite, O(Z, z)
muzt not vanish. Eke in the physical problem h
must be a real number, it would be desirable to have
the roots of Q(z, z)= Oimaginary. It proves to be im-
possible to make the roots of Q(z,z) = Oimagimmy by
any choice of ~. Calling the roots AI and A2,where

()
Xl> h and calling the value for sepmation X, = –~ ,

G was selected to make ~ as large as possible.s The

maximum ratio is found’ for al =0.11, X,= – 17.18,
h= – 30.89, h =48.52. The values for J?ohlhausen’s
solution (21) are X,= —12, Al= —17.76, Ai= 12. The
range of application is thus extended by the moMied
method. The improvement in range is not accurately
indicated by these figures since the values of 6 and
hence of A are not strictly comparable;’ but the ilU-
provement is sufficient to deal with problems that
cannot be handled by (21).

The modified solution is then

MODIFIED POHLHAUSEN METHOD

In the application of Pohlhausen’s method to certain
types of problems, ditEculty arises because Q(z, z)
vanishes and dz/dz becomes infinite. In at least one
case in the literature, this behavior has been taken as
an indication of early separation of the flow (reference
4), but imw.tigation shows that the singularity is
introduced as a consequence of the nature of the
azsumed veloci~ distribution and represents a failure
of the method. An attempt was therefore made to
remove this limitation on the range of application of
Pohlhausen’s method. The attempt was not com-
pletely successful; but, without serious additiomd
complication, the range has been greatly extended, at
the expense of some decrease in the accuraoy of the
approximation.

The modification introduced was the addition of
‘ mother term in the expression (11) for the velocity

distribution, determining the additional constants to
avoid the iniinite value of &z/&, if possible. Thus the
velocity distribution WE+assumedto be

fi=(G+a,A)#+(bo+blA)$+(%+c,x)$+(4+4A)$

If+ [a+eJ) ~ (22)

Leaving G and a, undetermined and applying the
conditions 7, 8, 9, and 10, we iind

b~=o, bl= –;, ~ =10—6%, cl=~—6a1, &= —15+8G,

‘3
d,==–5+8tz,, b

1-6 —3G, cl-7 —3al.

Likewise:

r .,

;= (1.89 +0.llX); –(;)$+ (–1.34+0.84x)$

+ (0.12 – 0.62A)$ + (0.33+ 0.17X)~ (24)

where L= U’Z=~- z and hence ~ are to be deter-P
mined from

Ldz 0.8 – 59051.9+ 13783.3A–
( ‘3’3-14-6’47%P-(1+%)’SI—.dx U[–1500.63– 17.6337X+X3 (25)

4A mererelleblefndexof the fmprovomentfs gfvenby a cansfderationof the so-

mfkd “Verdrtingung&dfcke”,P, definedby @-. j%(’-+)dflmd thewrms.
pending 1“ -w?. For Poblhmwm’s mlntfon, ~- x@3cc-0.fI133?J), wheuce

X*=X(O.3fE3-0.WW3X)~.For the modifki mlntfan ~- 3(0.311-O.fK037A),whence
X“.X(O.3U-O.C0207A):.It is remMlyshown thet for Pobfhenmn%solntfen,h“.
–L% k*=–3.5& k“@.4S; for the modlkf mlutlon, LO--219, x,*= +.7s,
?.2*-1.W.

$Tho mcdikf methmiwas developedin cmmwt[onwith the study of a flew fn
whlobseparationwasaqwatd and fn whfahPobfbausen’smlutfonfafledby dr/rk
bcmnnfnginfbdte. Henm tbfe eboke of m. The maximumratio and the rnrrm
pondfngvalneof al wemfoundby trfaf,Le., by snktituting varfom velnm of a, fn
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APPLICATION TO FLOW IN WHICH U=lcxa

POHLHAUSEN‘S APPItOXIMATION

A problem for which exact solutions have been given
by Falkner and Skan (reference 6) is that in which
U=@F’ where k and m are numerical constants. For
thiscase U’ =mU/x, U“ ‘m(m —1) Z7J2,and ZJWJZV
= (m– I)/m, a constant. Equation (2o) becomes, on

dzldXD”, ~=uz–v,k andcollectingtermssett@ z =A/u’ —

5 a= @–A,) (x-x,) (k-h).—
3m+l z ill A’+5.76X–213.12

(26)

k3(0.6m+ 0.2) +k’(36m+ 1.92) +X(–213.12

– 11.23.20m) + 7257.6m= O (27)

The variables k and x are separated, and equation (26)
may be readily integrated to give 5

(x– M”(w’(H3)’=A#+’”

where A is the constant of integration, and a, b, and c
are given by the relations

~=kl’+ 5.76XI–213. 12
(h –M (h–h)

~= A2’+5.76X2–213.12
&-M Gb–h)

~= A,Q+5.76X,–213.12
&–k,) &–&!)

The constant of integration A must be determined
by the boundary condition which fixes the value of A
at some lmown value of z. Thus if x =L at z= 1,

A= @.–k,)= &-x*)”&-AJ and the general solution
is

(x-x,)” o–x,)’ (A-A,)’ —
Cb–h)a(L–M’ &-kJ- @J+’

The behavior of the general solution can be traced
by somewhat tedious numerical calculations for deiinite
numerical values of XCand m. If &is selected equal
to Xl, x*, or b, it is obvious that the general solution
degenerates to the particular solution x= xI, x=x2, or
x= Aa,in which x is ccnstant and independent of z.
These ore the so-called homologous solutions studied

U’IY mU62
by Falkner and Skan. Since h= 7=7 for this

case, 8= d~ ~ The velocity distribution curves are

homologous, the solution for any value of m being

r
Urngiven by a curve of ~vs. ,y ~ or, .C&MM~ is const~fi

for any m, of ~ VS.Y
T

~ It is convenient to write

~- iV, in which case equation (27) becomes

JAs9umingm#-M in u-hkham themareonly 2rmtdof (27).

iW(0.6m3+0.2m’) +M(l.92m+36m2) +~(-213.12
—1123.20m) +7257.6= O (28)

Since (28) is a cubic in iV, there are in genernl 3
values of iV and hence 3 solutions for each value of m.
The results can beat be visualized from a graph of N
vs. m. This graph is shown approximately in figure 1.
The computed valuea are giv~~ in table I. -

TABLE 1.—ROOT8OF EQUATION(28)

m
——

Zm
LM
LC@
a.xl

.: m
–aw
-a Qa2E
-a 10
+30
–o.n
-am
–L W

N,

4 14A
&20s

2%
3LW4
37.90
75. 2s

lit%
p&.

hw:
a.

Ns
.—

1: E
17.803
39.70
Imnlta

–1,40L45
–m-s.57
–37a 1
–MO. o

–14754.0
w.
w.
w. T

h h

I& 170 -77.2a
10.m -76446
17.m -72 B
19.Sbo -oh 26
‘ia13 –37.73
!29.229 -34..%s
34.791 -1& w
?&13 -17.76
S&al -1200
44202
Iulrlg.

@
Infinite

hnag. -lsl. 15
Im13g, -107. S6

●i,=mN,, ht=mNf,b=mh”ti

It maybe noted that k does not appear in the solu-
tion. k may be either positive or negative; equation
(28) is the same in either case. If k is negative, U is
negative, i.e., directed in the oppositi direction to x
and the negative values of iV must be selected, since z

mll I 1 1
A-J38.

t

A=-w ?
h
A ’28

1

/

. c

/ A B IBi
I I I I I I II I I I I I I

/1
J&

-3m

B
A-m A=28

-m
-3 -2 -1 0 I 2 3

m

FIGIJBEL-omph of equntkm(23),in @ Sohemat!o

is always a positive quantity, being proportional to
the square of the thickness of the boundary layer.

The solution given by Pohlhausen for the caae m =
– 1, k negative, is wrong. As shown by figure 1,
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there is no solution given for this case by Pohlhausen’s
method. The solution given in reference 1 was appar-

d(M) ~ CA+ ~h ~fich
ently obtained by setting ~= – dx ‘
is obviously wrong.

For the flow U=k&, no dif6cul@ is encountered be-
cause of the vanishing of Q(z,z) in equation (2I ). Ais
constant for a given value of m and when m is such
tlmt the corresponding X(= miV) is equal to a root of

(?(z,z) =0, k is also a root of P(w) =0. Hence &

is indeterminate, but not iniinite. However, when x
is greater than 12 (one of the roots of Q(z,z) = O) the
speed within the boundruy layer rises to a m&um
exceeding U and then falls to U. Although such solu-

FLOW IN A LAMINAR BOUNDARY LAYER 439

to the ~umptions on which the approximate equations
were deduced.

This leavca for consideration the brtinch labeled ~,
divided in three sections Al, A2, and As. Al and Aq
represent flows without sepmation, A being between
+12 and – 12. The branch A2 represents a flow with
separation. ~For negative values of m and positive k,
representing a flow with velocity decreasing as z in-
crea.sea,if m does not exceed in absolute value 0.10,
there are 2 solutions, 1 without separation and 1 with
separation. For larger negative values of m, there is
either no solution at all or only a solution with separa-
tion. This result may be compared with that of l?alk-
ner and Skan where a flow without separation was
possible if m was negative but not for absolute values

m
,.,,

/“ .. / c-
) —-- Pohhousen

/:/

I Rtt-H

X---- M~&fied p&/h~~~
/’,’,H

+ Blosius
/., II

a2

I I I I I I I I I I I
o I 2 3 4 5 6 7 8 9

w+
FImrrmZ-Velwity dfshibutionfn borrndarylayerfor the raw U==

tiona seem to be possible even in the exact treatment
given by IMkner and Skan, they do not, so far as
known, occur in any actual flow. The solutions repre-
sented by the branches marked B in figure 1 (iV2and
}Z in table I) are therefore probably not of interest.
likewise when x is negative and much greater in abso-
lute value than the other root, – 17.76, huge negative
values of u occur within the boundary layer. The
solutions represented by the branches marked C in
figure 1 (IV,and A,in table I) are probably not found in
any actual flow. It must be remembered that although
such solutions of the boundary-layer equatiorw.may
mist, the boundary-layer equations are themselves
approximations. The solutions represent ed by
bmnches B and Care of the type which do not conform

Go14&20

greater than 0.09. The branch Al, represents a flow
with a veloci~ increasing as x increases.

The speed distributions for positive values of k and
values of m equal to 2.0, 1.0, 0.5, 0, and —0.09 were
given by Falkner and Skan. They are reproduced in
figure 2, together with the rwdts computed from table
I (root Nl) and those obtained by the method given
later.

The case m= O is that treated by Blasius, whose
rewlts are also shown.

The agreement is very close except for m= – 0.09.
For this cam the method of FaXrner and Skan is prob-
ably open to criticism. The series used to represent

r
the solution is not convergent for values of y ~much
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greater than 6, at which value u/V equals 0.95. At

YJ
#=5, u/U is 0.83 and it appears impossible to tell

whether u/U approaches 1 as y increasea, since the
series is not convergent. Since the approach of u/D
to 1 is the criterion for dete the constant which
determines the coefficients in the series, it cannot be
demonstrated that the solution given is correct. How-
ever, this difkrence may be takan as a waning that
Pohlbausen’s method may not be satisfactory for
negative vrdues of U’.e

Qttti
I 1 1 I I I

I I -&-- I / a--/zLQol +-H-t-H, v . . . . ...

Im 442
\

I
1 A=88

\

A-O ~<
I

-51A, ~1
No — ?

A-w A, \
— -A--175-

- —

-Im AZZ

B.
.

I>A-435 c

-m I
Two fbS

I

-m

I Otl

y-+efo

4(W
A-m \ 1A-102

-3 -2 -1 0 I 2 3

MODIPfED METHOD

The solution by equation (25) proceeds along the
same lines as by Pohlhausen’s approximation. Equa-
tion (28) is replaced by

N’(0.6m3+0.2m’) +W(49.02194m2-5 .87794m)
+N(– 9526.Olm– 1500.63) +47241.52=0 (29)

The roots are shown graphically in figure 3; the data
from which the graph is plotted are given in table II.

8ikma recanterpdmentsl workmmplotedat the Nationsf Bmean of Stsndardn
lndfcatosthst Pohlhtsem’s tipproxfmstfonk Indesdvem w fornwstfve vslum
of U’, sepsmtfonmmrrimgat vslnesOfXof the oral=of –5.

COIKWTJIED FOR AERONA~CS

m

TABm 11.-ROOTS OF EQUATION (29)

NJ

The branches A,, AQ, A, B, and C correspond to
milar branches h“ Pol&a”~e~s solution. The new
dmre is the occurrence of branches A and .B1. 111
of the B type discussed previously. & gives a solu-

on without separation for negative valuea of m greater
Labsolute value than 0.276, if k is negative; i.e., if the
NVis one in which the speed increases as z increases.
or m = —1, the boundary-layer equation may be

1.0

0.8

;0.6

/

0.4

0.2

0 0.4 0.8 1.2 f.6 2.0 2.4
yqu/xv

FImrEE4.-Valoofty dfstrfkmtionfn bonndargfayaTforthe ~ T.&-k/z

[actly integrated (reference 1) with the resultant dis-
ibution:

%“2-’t~2@+d=7
; should be noted that since k is negative, U is nega- .
ve, and hence – U is positive. Whereas equation

!8) gave no solution, eq~ation (29) gives -

r
N= ~= –6.158, h=6.158, 8=2.481 *U

he corresponding velocity distribution from (24)
)mpared with the exact distribution in figure 4.

is
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The results for m equal to 2.0, 1.0,0.5,0, and – 0.09
are shown in figure 2 for comparison with the rcsndtsby
PohlhrLusen’ssolution (equation 28) and the results of
IMkner and Skan. It is seen that Pohlhausen’s solu-
tion is in general a better approximation than the
mocMed solution.

Ih figure 1 and figure 3 the vslues of x change con-
tinuously along the severil branchea of the curves.
The way in which the branchea join at infinity is indi-
cated by the variation of h. A study of thcae two figures
leads one to believe that equations such as (20) and
(25) of the third degree in A cannot represent the solu-
tion over the entire range, and since the degree in x
can be traced to the fact that (19) and (24) are linear
in 1, it is probable that the distribution curves either
are not linear in A or that other quantities such as
UU’’/g’g also affect the shape of the distribution curve.
Nevertheless, the approximations are valuable where
they do give a solution.

APPLICATIONTO TRANSVERSEFLOIVABOUTA
CYLINDER

The flow in the boundary layer of a cylinder has been
computed by J. J. Green (reference 7) by a step-by-step
method in which it vms assumed that the circumferen-
tial velocity is expressible as a power series whose
coefficients are functions of the distance slong the sur-

0

TA.BLFIIU.-DATA FOR SOLUTION

z

o
0.0436
.m
.lW
.1744
.awn
.me
.Kkll
.34W
.W24

:=
.623a
.Eam
.E$33
.ec16

u

o
a m
.307
.4s6

::

i%%
L 176
L2S3

M
L 623
L 649
L664
L6S4

v

&ma
am
3. S16
3.643

w
% Ols
2 S46

kg
z 113
L643
.967
.46a
.161

–.cm

-am
+. 0446
;itg

–. 2746
–. 4236
–.4S16
-.m
–.63&7
–L 4204
-2.9477
–& 1623
–la 4.5$
–9L 04
–s22 o

–3,74&o

.
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speed Uo, z the ratio of the distance measured along
the surface from the front stagnation point b origin
to D, u the ratio of the &tan-& meas&ed normal-to
the s~ace to D and 6 the ratio. of the thickness of
the boundary layer to Il. It may be shown that the
only change required in (25) is in the definition of z
which becomes z =@s where R is the Reynolds
Number U@/v; in other words v k replaced by l/R.

The values of U, V, and D“ were taken from data
given in Green’s paper, table III, columns 4, 5, and
8. The relations between U, U’, and V’ and Green’s
~ujl’, ~d @ me w fo~o~:

U=g

flu’” –—R%j

LgQZp’-l

The solution of equation (25) was carried out by
the isocline method. The first step in this method is

the computation of vahnw of
dz
~ for seversl value9 of

m“z and z. The values of z, ‘U, U’, and ~ are given

in table III, together with the values of ~ for several

values of z obtained by substitution in equation (25).

OF EQUATION(25) FOR CYLINDER

o a 76

——

&;

MO
2a4
lam
17.07
1&83
1470
13.97
13.64
14.21
lh m
17.16
lam
19.73
%91

&cm2-

LM

--G:
–29.w
–l& xl
–0. WI
-4!M
-L 18
aw

M
6.14
9.!2+3
13.77
17.u
19.34
2673

\-

’224 I I ’763.m

-;-s0 –&mo
–ful 4 –la o
–a o .---------
–37.3 -64.0
–24.6 -44.2
–17. !29 –33. o
–1281 –!26. E.%
–Q es –al m
–R 47 –m m
–L69 -9. a3

1; z %
16.7s 14.48
m m
27.81 %%! I

—.--..-
-axl o

,.--.----..--
-LXL 6
.-. ——.
-4%4

-----------
–3L 8

---------
-l& 34
–h 67

lM

%%

face. The approximate solution by equations (24) and In addition to z, which is the distance along the sur-
(26) was computed for comparison with Green’s more
nearly exact solution.

u-u”
While the quantitim ~~y X, ~and ~ in equa-

tion (26) are nondimensional, z and x are not. &
noted by Grean, it is convenient to measure all dis-
tancea in terms of some reference distance, in this
case the diameter D of the cylinder, and all speeds in
tams of some reference speed, in this case the speed
Z70at a great distance from the cylinder. For sim-
plicity, no new symbols will be introduced, but ?7 is
taken to mean the ratio of the speed in the potential
flow outside the boundary layer to the Teference

face from the front stagnation point, the azimuthsl
angle e is given.

An isocline diagram is prepmed horn the data in
table III, that is, a chart with z as ordinate, and z aa
abscieaawith curves showing the 100iof constant values

of ~” h practice it is convenient to change the scale

of z relative in z to give values of”$lw than 10.

dz/10 .
In the present case the use of” z/10 and ~ ~ found

desirable. A portion of the isocline diagram is shown
in be 5. The numbem on the curves are the values
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of ~. The curves are located by interpolation be-

tween the valtmsgiven in table III. Thgs at z = 0.4796

the isoclined~o
–= ’’en’o)’= “avd”eof ‘0’

1.49; the isoclbd~o—= 1.5 lies at z= O.829,etc.

The solution curves of equation (25) must cross the
isoclinea with the slope indicated on the isocline, that
is, the zero isoc%e must be croswd horizontally, the
isod.ine labeled 1 at a slope of 45°, etc., as indicated by
the short lines in figure 5 crossing the isoclines.. The
particular solution curve in which we are interested is
the one which satisfies the boundary conditions at
z= O, the front stagnation point. Because U= O at
a= O,we find here a singularity; there is no true bound-
ary layer right at the stagnation point. The isocline

chart shows a singular point at which% is indetermi-

nate. No matter what value of z is assumed at z= O,

0.41 I I I I I I I I I !L’+-LJIII 1

0.3

0.I

I .30

0 0.I 0.2 0.3 0.4 0.5 0.(
x

FIGURE &-Isdfna dhgram fortmnndarylayerof a cyllnder

the attempt to construct the solution curve leads imme-
diately tc the singular point.

It may be shown that the zero isocline leaves the
sin.dar point at zero slope and that the desired solu-
tion is constructed by starting a solution curve in this
manner. The curve is shown in figure 5. In the actual
computation, a greater number of isocline-swere drawn
to a larger scale. From this curve, the values of
z= B ? were.obtai,ned as.a function of z (table IV’).

TABLEIV.-VALUES OF R31 FOR CYLi.NDER

.

The velocity distribution was then determined from
(24). The curves for SC=0.1308 and x=0.5668 only
we shown in @me 6. The results ‘of experiments by

Green and the results of Green’s computation are also
shown. At other values of z, the diilerences are of a
similar nature. In Green’s computation, the speed in
the potential flow was taken from the experitnentally
measured values, although the pressure distribution
was alsoused in the remainder of the computation. Wo
have used only the rwults of the pressure distribution.

REMARKSON THE ACCURACY OF THE APPROXIMATE
METHODS

The preceding comparisons show that in theso
particular cases approximate methods give a fairly
good representation of the actual distribution, the
di.%rences not exceeding 0.05 U for the modiiied
solution, or 0.02 Ufor Pohlhrmsen’ssolution, where it is
applicable. Unfortunately, all of the satisfactory
.exaet solutions are cams in which A is positive and
km than 10 and UU’’/U’ ‘is small. No satisfactory
comparisons are known in whi~h Ais negrttive.
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It is possible to approach the question in a diflerent
way. The approximate solution may be used to com-
pute all quantities entering in the differential equation
(1) and a check made as tc the accuracy with which
the equation is satisiied. There will be found a
residual error which is most conveniently expressed as

a ratio to the last teqm ~~ (= UU’ by equation 4).

This error will b,e a f~ction of y, nearly zero on the
average, exactly zero at y = O and v = 3 and at some
i@mn@iate point. Figure 7 shows the maximum
positive and negative residuals for vrtlues of A from

Uu”
–20 to +20 for p=O, +44, and –45 for the

rnodiiiedsolution (eguations 24 and 25).

The maximum errorsfor Abetween Ortnd8
Uu’;

‘7=”0’
the region in which comparisons with exact solu-
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tions are available, are of the order of 0.3 to 0.4
times VU’. (Note that X= O corresponds to U’ -0,
hence error /UU’ approaches infinity at A= O). The
errors for negative x are slightly greater than for
positive i. As UU’’/U’ 2 increases, the errors become
larger, especially for positive vahmwof X.
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F[auuE7.-Errors Jn the modifki mduffon(Wnatlons (24) and (U)) at vorions
till= OfXand ~’l~;

CONCLUSION

Approximate methods of the type suggested by
Pohlhausen for calculating the flow in a laminar
boundary layer are useful in giving one a fair picture
of the flow when the parameter x and UU”/ U’ * are
not too large. The solution given by Pohlhausen fails
when U’ is positive and large, such that x=12. An
extension of the range of application of the solution has
been accomplished by a modification of Pohlhausen’s
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method with a decrease in the accuracy of the approxi-
mation. Comparisons have been made of the approxi-
mate solution9 with exact solutions for the case9 in
which exact solutions have been published. The
approximate solutions of the type studied appear to
be very poor when A is negative.
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